

OSA 500 B

Split System Outdoor Unit

GENERAL

OSA 500 B - A general designation for outdoor unit
OSA 500CB - Outdoor unit, cooling only version
OSA 500RB - Outdoor unit, reverse cycle version

The OSA 500 B outdoor unit is a twin system that provides the facility for capacity control (staging) or staggered starting.

Alternatively, the OSA outdoor unit can be connected to two indoor units of half capacity, controlled by a single thermostat. Four indoor units of one quarter capacity, i.e. two pairs connected in tandem, is also an option. In either case, refer to **temperzone** engineering for wiring details.

This OSA 500 B Outdoor Unit must be installed in accordance with all national and local safety codes.

Combinations

One OSA 500 B with one ISD 500QB One OSA 500 B with two ISD 250Q One OSA 500 B with four ISD 125Q

INSTALLATION

Positioning

Refer to dimension diagram below for minimum clearances. Fasten the unit down to a firm flat horizontal base using the four holes provided in the mounting rails.

When the unit is being installed on a roof it is recommended that the unit is installed on a substantial structure with vibration isolating springs beneath the unit. These springs are not supplied with the unit.

Drains

Four drain holes are provided in the base of the unit for the release of condensate and/or rain water. For a totally drip free installation mount the unit in a separate drain tray.

Coil Protection

Coil protection guards are available as an optional extra.

OSA 500 B

Installation & Maintenance

OPTIONAL FAN SPEED CONTROLLER

Fit a head pressure fan speed controller where cooling is required in below 20°C ambient conditions for long periods of time. An electronic HP Fan Speed Controller (8 amp) is available from **temperzone**. One is required for each of the two systems.

REFRIGERATION PIPING

General

The OSA 500 B is shipped with a holding charge of refrigerant. The matched indoor unit is shipped with a holding charge of nitrogen. OSA 500 B units have two flare and two brazed pipe connections.

Recommended Pipe Sizes

Suction pipe (x2): 28 mm OD Liquid pipe (x2): 16 mm OD

Line Lengths

For line lengths in excess of 50 m, contact the manufacturer's nearest sales office for additional details on piping requirements. Maximium extended line length is 70 m/sys.

Height Separation Limits

Outdoor Unit above Indoor Unit: 18 m Outdoor Unit below Indoor Unit: 12 m

Vertical Risers

If the outdoor unit is to be installed above the indoor unit, then the suction riser should be trapped at the bottom of the vertical rise and then again at 5 m (maximum) intervals. This is to ensure oil return to the compressor. The trap to be a 'swan neck' curve in the pipe, with no change in the pipe size.

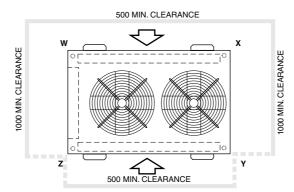
Piping

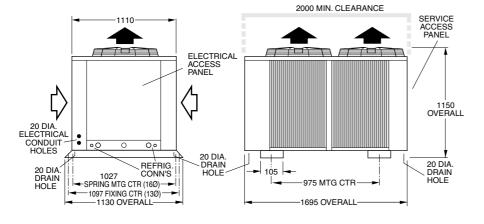
- Use clean sealed refrigeration grade nining
- 2. Cut pipe with a pipe cutter ONLY.
- 3. Use long radius bends (2 x pipe dia.).
- 4. Insulate the suction (gas) line and seal all insulation joints.
- Filter dryer may be fitted in the liquid line (bi-flow type on reverse cycle systems).
- Include a process point on the interconnecting pipework.
- 7. Ensure open pipe ends are sealed until the final connection is made.
- Immediately before removing brazed pipe connection's seal, reduce holding charge between connection points and service valves to atmospheric pressure. Warning: Failure to do so may cause injury.

Important

Do not connect System 1 to System 2.

Dimensions (mm)




Not to Scale

Net Weight

OSA 500CB 394 kg OSA 500RB 404 kg

Point loads are approximately 100 kg at each corner.

Charging

The unit is supplied with a 1 kg of holding charge of refrigerant HCFC-22 (R22) per system. Add 6.5 kg of HCFC-22 per system to complete the base charge, then add 105 g per metre of pipework between indoor and outdoor units.

Procedure (per system):

- Evacuate Indoor Unit and interconnecting pipework to a pressure of 500 microns and hold for 15 mins.
- Add refrigerant via the Schraeder connection on the smaller of the Outdoor Unit's two service valves.
- Open the service valves at the Outdoor Unit to allow refrigerant to flow throughout the system.
- 4. Leak check all brazed and fitted joints.

IMPORTANT:

Step 9 of the 'Start Up Procedure' requires you to check that the superheat on the suction line (where it enters the Outdoor Unit) is between 3°C - 5°C on cooling cycle with an indoor air temperature in the range 21° - 27°C and outdoor air temperature in the range 24° - 35°C. If the conditions of the day do not allow this, use the heating cycle (on a reverse cycle unit) or other heat source to raise the indoor air temperature to about 24°C. Return to cooling cycle and blank off the outdoor coil to raise the head pressure to 240–280 psig (1750–1950 kPag). Alter charge up or down to establish correct superheat.

WARNING:

This unit is designed for use ONLY with the refrigerant HCFC-22. The use of other refrigerants is NOT authorised or approved by the manufacturer and may cause operational problems such as poor performance and efficiency, loss of capacity, degradation of materials and refrigerant leaks. The use of flammable or explosive materials as a refrigerant creates the additional risks of fire and explosion which may result in property damage, personal injury or death.

Oil Charge

For line lengths in excess of 30 m, Emcarate RL22CF polyol ester oil (or similar) should be added to the refrigerant at the rate of 30 ml/m of suction piping.

Note: This oil absorbs moisture quickly if exposed to open air. Do not use mineral oil.

ELECTRICAL REQUIREMENTS

Electrical work must be done by a qualified electrician. The outdoor unit must be wired directly from a distribution board by means of a circuit breaker or H.R.C. fuse, and a mains isolator provided - preferably close to the Outdoor Unit.

Note: DO NOT USE REWIRABLE FUSES.

The OSA 500 B is provided with a 24V AC control circuit for a thermostat, on/off switch and/or time clock.

The control transformer 240V primary voltage is used for countries with 230-240V power supply. For countries with supply voltages 200-220V, change the primary voltage on the transformer to 208V.

OSA 500RB only - It is recommended electricians run a spare wire between Outdoor Unit and Indoor Unit(s) in case boost electric heat becomes a requirement. **Note**: Leave the wire unconnected until required.

Standard units are suitable for use with thermostats with either manual Heat/Cool selection or automatic changeover subject to the contact ratings of the thermostats.

A 24 hour power supply to the compressor crank case heaters is required, otherwise the warranty is void.

SYSTEM CHECK TESTS

- Leave the remote switch in the off position and close the mains isolating switch
 - A four hour delay period is required to allow the crankcase heater to drive any liquid refrigerant out of the compressor oil.
- Check that the shipping blocks beneath each compressor have been removed and that each compressor is secure on its mounts
- Check that all fan motors are free running.
- Check that the thermostat is correctly wired to the unit and is set at the desired temperature.
- Check that the air filters, if any, have been correctly installed.
- 6. Check any supply air diffuser dampers are open.

START UP PROCEDURE

Check each system independently first before running complete system. Use the supplied Commissioning Sheet to help you complete the following procedure:

- After the four hour delay period has expired switch on the unit.
- 2. Check the supply voltage.
- 3. Fit gauges and measure the suction and discharge pressures.
- Check for correct rotation of the compressors. If rotation is incorrect a compressor will not pump, be noisy, and will draw minimal current. To correct motor rotation, change the phasing at the main power terminal.
- 5. Measure the current draw on each phase to the compressor motor and on each fan motor. Check all readings against the specified values particularly the indoor fan amps if the unit is installed in a free blow application.

- Test the operation of the high pressure safety control by switching off the outdoor unit's fan.
- Test the operation of the reversing valve by running the unit in both the heating and cooling mode (OSA 500RB only).
- Check that the air flow over the outdoor unit's coil is adequate and that the fan is running smoothly.
- 9. Check the superheat refer charging procedure.
- Check the indoor unit's fan belt tension after 20 mins of operation and adjust if necessary (refer Commissioning Sheet).
- 11. Check the supply air flow at each outlet.
- 12. Check the tightness of all electrical connections and sign the check label.
- 13. Touch up any outdoor unit paintwork damage to prevent corrosion.

MAINTENANCE

Weekly For First Four Weeks

- 1. Check indoor unit air filters (if fitted) and vacuum or wash clean as necessary.
- 2. Check condensate drain for free drainage.
- 3. Check compressor compartment for oil stains indicating refrigerant leaks.
- 4. Check tightness of electrical connections.

Three Monthly (or every 1200 hrs of operation) Check the indoor unit's fan belt tension and adjust if necessary.

Six Monthly

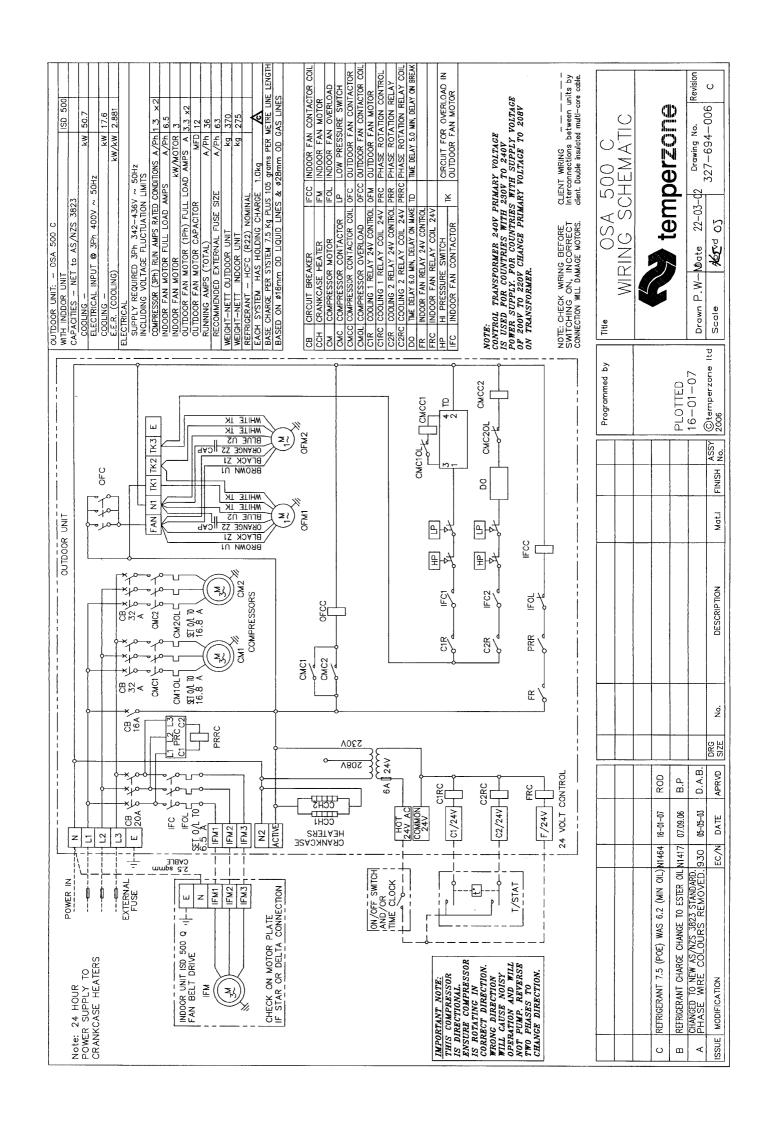
- Check the tightness of all fan and motor mountings.
- 2. Check the tightness of all electrical connections.
- 3. Check that fan motors are free running.
- 4. Check suction and discharge operating pressures.
- 5. Replace indoor unit air filters (if fitted).
- Check condensate drain for free drainage.

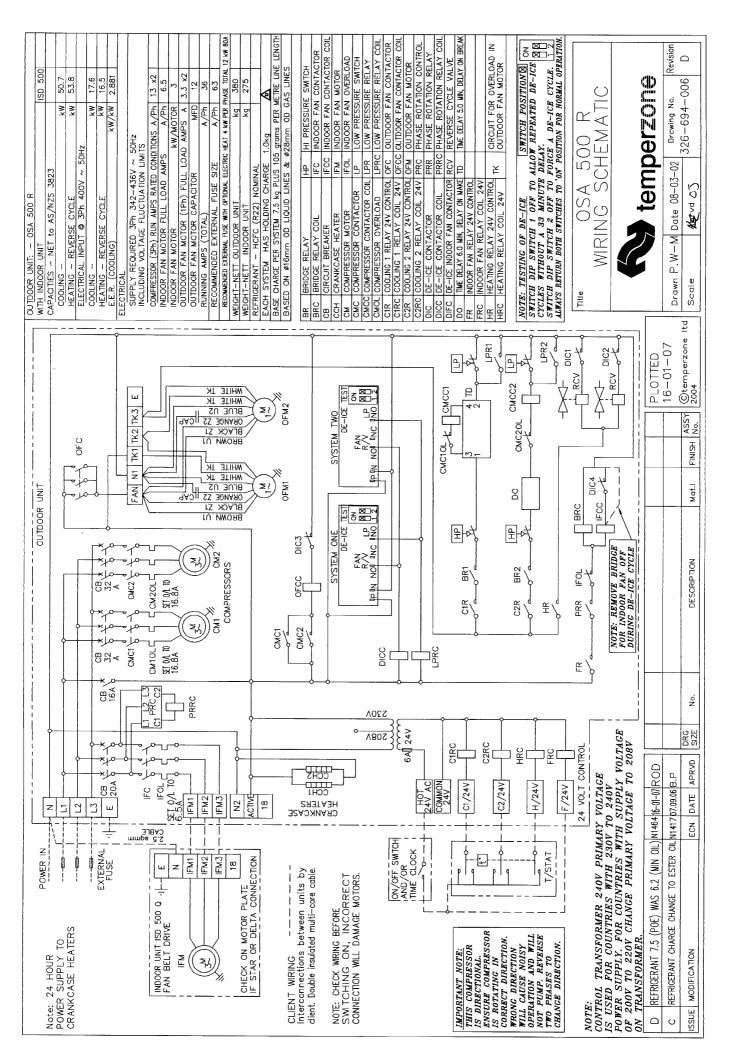
Yearly

- Check all refrigerant piping for chafing and vibration.
- Check the operation of electric heaters if fitted.
- 3. Check air supply at all diffusers.
- 4. Check for excessive noise and vibration and correct as necessary.
- 5. Check for insulation and duct damage and repair as necessary.
- Remove lint and dust accumulation from outdoor coil fins.
- 7. Touch up any outdoor unit paintwork damage to prevent corrosion.

NOTE

The manufacturer reserves the right to change specifications at any time without notice or obligation. Certified dimensions available on request.


This pamphlet replaces the previous issue no. 2663 dated 09/06. Wiring rev's C & D .


Pipe Length Capacity Loss On Cooling Cycle Due to Pressure Drop

Note: Loss percentages are approximations only, due to piping variations. No allowance made for vertical piping.

Pipe Size (mm)		Equivalent Line Pipe Length (m)			
Liquid	Suction	10	20	30	40
16	28	1 %	2.5 %	3.5 %	5 %
16	35	-	1 %	1.5 %	2 %

Additional Pipe Length to allow per Bend						
Suction Pipe Size OD	28 mm	35 mm				
Long 90° Radius (2 x pipe dia.)	0.61 m	0.76 m				

