MAGNUS Low GWP Solutions

Temperzone Talks - October 2019

climate innovations

Energy Use in Buildings

- 16% of NZ electricity usage in non-residential buildings
- 33% used for lighting
- $\circ~$ 33% used for HVAC \$1billion / yr
- $\circ~7\%$ of national gas consumption \$650 million / yr
- 10% of NZ electricity use to heat water
- Water sourced air-conditioners replaced by VRF based systems
- Commercial building use 200 kWh/m²/yr versus 53 kWh/m²/yr for residential

Seasonal Energy Efficiency Rating (SEER)

NERGY RATING

r conditione

Model: KRCM00

Requires testing of air-conditioning units at "part load", as well as the traditional T1 and H1 conditions

- Unit operates the majority of the time at part load
- Suits inverter based systems
- Variable speed fans
- More complicated technology
- Increased efficiency
- Requires H2 testing for <30 kW units

Seasonal Energy Efficiency Rating (SEER)

Kilgali Amendment

HFC Phasedown

- Aims to prevent 0.5°C of global warming by 2100
- Ratified Oct 3, 2019. Begins Jan 1, 2020
- 486 tonnes HFC lost to the air each year in NZ,
- \circ 1.1 million tonnes of CO_{2(eq)}
- Equivalent to 540,000 cars.
- Or 1 kg released = annual emissions of 1 car

Main refrigerants in play

Kilgali Amendment

HFC Phasedown

- R410a (GWP 2000) being replaced by R32 (GWP 675) is most practical option
- A2L mildly flammable
- Many residential products now converted
- Transition for commercial products underway
- Charge restrictions in occupied spaces
- More efficient, 30% reduction in charge volumes
- Vapour injection technology often required for heating

T5-80% reduction in GWP per kW cooling capacity Higher COP, and more capacity in heating cycle

Kilgali Amendment

R32

- Era of high refrigerant volumes in buildings is ending
- Affects VRF systems exceeds charge restrictions
- Increased role of hydronic based HVAC systems
- Allows low charge, and water to be piped through building
- Water likely to be increasingly used as energy carrier around buildings.

Next Generation Development

- Further development of our commercial inverter and EC fan technologies
- Began work with Honeywell 2014 on post R410a refrigerants
- Adopted hydronic based strategy 2015
- Supported by new class of refrigerant to water heat-exchanger ThermoShell
- Released in the water source air-conditioners from 2017
- IoT Development platform to support product development from 2017
- To be released in the broad range of HPWH 2019
- Adopted R32 as development platform early 2018
- Field trials of R32 products began Q3 2018
- New range of R32 packaged rooftop and ducted split units for 2020
- Reduction of GWP by 75 80% per kW of cooling

Heating Systems

Increase Electrification. Remove fossil fueled heating options.

- Replace central boiler systems with distributed heat-pump systems
- Separate potable hot water from space heating
- Replace reconditioning boilers with heat-pumps
- Replace electric heater banks with heat-pumps
- Design to lower supply water temperatures
- Separate heating loads into preheat / high temperature components where >65°C is required
- Consider thermal storage, using low cost off-peak electricity

MAGNUS[™] powerhouse water heaters

MAGNUS key principle

- For a given supply water temperature, the cooler (or warmer in chiller mode) the return, the more efficient the system is.
- Based on a design leaving water temperature (LWT) supported by inverter compressors
- Variable flow to control the capacity
- Simplified controls / highly effective in application
- Supports the part load efficiency of operation
- Next Generation Hydronics platform developed on this basis

Low carbon water heating

- 10% of national electricity consumption to heat water
- Electric, solar and heat-pump water heaters are main options
- >65% electricity savings compared to electric
- Fraction of GHG emissions compared to gas
- Comply with G12/AS2 Legionella control.
- Reduce use of ring-main systems
- Maintain thermal stratification of storage tanks
- Use "biosafe" controls to reduce temperatures required

Low carbon water heating

- Heat-pump water heaters are not "replacement boilers"
- Need to operate within specific conditions for reliability
- Need to be durable to achieve payback
- Care needed when designing 'combination' systems
- Selection based on application and climate
- Effective solar / HPWH integration possible

Application specific heat pump water heaters

Space heating

Pool heating

Potable water

Underfloor heating

Temperzone Talks – October 2019

Traditional Systems One size fits all approach

- One size fits all approach
- Inefficiencies with buffer tank due to mixing
- Higher buffer tank temperature than needed
- Large pump power required
- Large piping for high water flow rates
- High capital and installation costs
- Larger system footprint

MAGNUS In-line Design Variable delivery systems

- Application specific design
- Lower capital costs
- No buffer storage tanks required
- Smaller pump size required
- Reduced piping due to lower water flow
- Reliable long-life systems
- Lower servicing requirements
- Compact design

MAGNUS Potable Water

- Smaller Tank

Hot water out

- Smaller Pipes
- Same delivery capacity

0

Integrated Solutions

Temperzone Talks - October 2019

climate innovations

Restaurant Integrated System

Hot Water / Fresh Air Tempering / Heat Pump Water Heater

Restaurant Integrated System

Zoned Hot Water Storage Tank

- To meet the simultaneous hot water demand and FAT demand under design conditions (1°C) ambient temperatures would have required either a substantially larger storage tank, or a doubling in the capacity of the HPWH.
- Both of these options would have significantly increased the capital cost of the system.
- An alternative approach has been trialed instead, using a zoned hot water storage tank in conjunction with a single pass HPWH.

System Performance Splash Monitoring

 The energy performance of the system has been determined for the period from 01/03/2017 to 28/02/2018 through the Splash Monitoring system.

Monitoring system installed included:

- $\circ~$ Flow meter on the total hot water usage
- Flow meter on the HPWH (total HW generated)
- Temperature sensors on HPWH flow / return, and at each zone in the tank
- Current transducers on the HPWH, and each electric element in the tank.

System Design Assessment: FAT / Tank Zoning Monitored Data

- Low Tank Lower Temperature (°C) - Low Tank Up Temperature (°C) - Up Tank Temperature (°C) - Outdoor ambient temperature (°C) - Return Water Temperature (°C) - Water Pump Output (V) - Element Relay Status 1:On 0:OFF () - Supply Air Temperature (°C)

TemperZONE Temperzone Talks – October 2019

Integrated System Performance

- Average daily hot water consumption of the store was 2200 L and heating this water required 49.4 MWh of energy.
- The FAT system consumed 57.9 MWh of heated water, resulting in a total water heating energy requirement of 107 MWh. This water was heated using 31 MWh of electricity through the HPWH, and a further 2.33 MWh of electric resistance heating.
- The HPWH achieved an annual COP of 3.4, and a **68% reduction in electricity consumption compared to an all electric system**. This corresponds to a 72.6 MWh reduction in electricity usage, at a value of \$10,900 (at 0.15c/kWh).
- As proportion of total electricity usage, an all electric water heating and FAT system would be expected to account for 23% of the total electricity usage of the store. The integrated HPWH based system has reduced that to 8%.

Annual Energy Savings

23 Electric Cars

traveling 50km every day

365 days a year

2018

		Ja	nua	ary			February							March						
Sun	Mon	Tue	Wed	Thu	Ini	Sat	Sen	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	fri	Sat
	1	2	3	4	5	6					1	2	3					1	2	3
7		9	10	11	12	13	4	5	6	7	8	9	10	4	5	6	7	8	9	10
14	15	16	17	18	19	20	11	12	13	14	15	16	17	11	12	13	14	15	16	17
21	22	23	24	25	26	27	18	19	20	21	22	23	24	18	19	20	21	22	23	26
28	29	30	31				25	26	27	28				25	26	27	28	29	30	31
2-	-	1	1	~	~	11	100	-	1	in	~	"	14	100	-	1	(mit	1	-	13
1	1	4	~	4	-		2	-	4		4		2.15	-	4	4	2	-	1	44
Sen	Mon	100	wea 2	3	-	545	200	200	107	Med	100	PR:	2	340	2 Mon	The state	wea	inu S	- 6	2
	7			10	-	12		1.	ų	1.1			12			10		12	12	-
	-	-	-	17	-	10	10	- 11	-		-	-	-	15	16	17	-		20	25
20	21	22	23	24	25	26	17	-		20	21	22		22	23	74	25	26	27	28
27	28	29	30	31	-	-	24	25	26	27	28	29	30	29	30					
-	-		Lub	-		-	-	-			1	-	1	10		-	Che la	-	-	and a
2	11		Juli	_		1	20		2	gu		1	11	20	14	92	2	29	11	1
Sun	Mon	Tue	Wed	Thu	m	Sat	Sun	Mon	Tue	wed	Thu	m	Sat	Sun	Mon	Tue	wed	Thu	m	Sat
-	-	-	-			-				-	-	-								2
					-						-			-						
12			10		20		-	10		10	20						-			-
20	30						76	22	28	20	30		**	23	74	25	76	27	28	20
-	~													30						
-	~	6	in the	POT		24	1	-	1	1	1	2	1	1	1		11	E.	-	11
1	4			-	-	1	20	1	\sim	en	25	-	12	211	11	E C	BII	10	11	12
3415	1	2	3	-	-		Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
			10		12	13					1	2	-							1
	-			-	-	-	*	5		7	8	9	10	2	3	4	5			8

Temperzone Talks - October 2019

Dargaville Hospital Boiler Replacement Domestic HW & Radiator panels

MAGNUS[™] powerhouse water heaters

Dargaville Hospital Boiler Replacement Domestic HW & Radiator panels

- Centralised primary circuits are typically designed to operate to the highest required temperature. Often, the annual load at this temperature is a minor contributor to the total heating load eg space versus potable water heating.
- Distributed, application based heat pump systems increase overall system efficiency by matching the required temperature to the supplied temperature.
- Approach avoids the distribution losses of the primary circuit, particularly outside of the heating season.
- Enables management of buildings based on occupancy levels.
- Allows DHB to operate units based on seasonality.
- Considerable application to remove fossil fuel from older buildings

Dargaville Hospital Boiler Replacement Domestic HW & Radiator panels

Coles Maquarie Fields: Electric heater bank replacement. Supplementary store heating

Coles Maquarie Fields: Electric heater bank replacement. Supplementary store heating

Coles Maquarie Fields: Electric heater bank replacement. Supplementary store heating

"

All up we achieved an actual reduction of 65% energy usage on the HVAC submeter, in raw numbers this is 364,206 kwh of which we estimate 65% was attributed to the heat pump installation (242,998 kwh).

Coles Macquarie Fields

Temperzone Talks - October 2019

Mt Cook YHA – 80 Bed Hostel Integrated HPWH / Solar thermal

MAGNUS[™] powerhouse water heaters

Mt Cook YHA – 80 Bed Hostel Integrated HPWH / Solar thermal

Mt Cook YHA – 80 Bed Hostel Integrated HPWH / Solar thermal

Deloitte ENERGY EXCELLENCE AWARDS

2019 Finalist - Low Carbon Future

- 1st synergistic heat pump / solar thermal integration
- Only achievable with unique MAGNUS single pass technology
- Provides all water heating without supplementary heating

Energy Savings of \$28,700 pa over gas boiler system

LOW CARBON FUTURE WITH HVAC

Two Pipe System

Two Pipe - System Design

- 12.5 90kW system
- Heating or cooling 2 pipe system
- Only heats or cools at any one time
- Thermostat controller / MODBUS
- Connect any Temperzone fan coils
- Fan coil unit controllers
- MAGNUS Inverter Hybrid (MWR)
 for heated or chilled water loop

Four Pipe - System Design

- 12.5 90kW system
- Heating & cooling 4 pipe system
- Simultaneous heating & cooling
- Use any Temperzone fan coils
- Fan coil unit controllers
- Thermostat controller / MODBUS
- MAGNUS Inverter Hybrid (MWH) for heating
- MAGNUS Chiller (MWC) for chilled water loop

Four Pipe System

Low Carbon Solutions

- Boiler to Heat Pump replacement for lower total emissions
- High part load energy efficiency with Inverter systems
- Efficient without the requirement of water buffer tanks

